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ABSTRACT

In this paper a simple inverse f ilter is developed to suppress multiple
reflections from a normal incidence synthetic seismogram. The filter is de-

veloped by means of Mendel’s Bremmer Series Decomposition (Ref s. 1 and 7) —

the state space model for the complete response is decomposed into primaries,
secondaries, tertiaries,..., etc., models which generate only pr imary, se-
condary , tertiary, ..., etc. multiple reflections, respectively. The equation
formulations are based on the opera tor description of state space model of
the layered media (ref. 2).

This f ilter removes all the multiple reflections from the seismogram
which are ever reflected off of the surface , inside the layered media, and
is especially effective when the surface reflection coefficient is rela-

tively large as in most geophysical situations. A recursive scheme of

applying this f ilter to the consecutive subsystems of the layered med ia is
also developed. It generates successive approximations of the primaries of

the system, the final result being the pure 

primaries.2
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I. Introduction

In seismic profiling of layered media, primary reflections — compres--
sional waves reflected directly from the interfaces of the layers — contain

the ultimate information for the determination of the subsurface structure

of the media. Miniw.ization of the contribution from other undesirable events,

such as noise, surface waves and ghost reflections, to maximize the contri-

bution from primary reflection has been one of the fundamental problems in

the analysis of seismic traces. Another and particularly troublesome type

of interference is that from multiple reflections. There are some special

classes of multiple reflections which exhibit significant amplitudes so

that they occur well into the seismogram and affect its appearance. They

are most likely to happen when the layered system involves one or more

strong reflectors. They occur through reinforcement of several multiple re-

flections. A general theory has been developed to locate and identify various

kinds of multiple reflections and reinforced events between them (ref. 6).

In the analysis of multiple reflections, which represent a highly complicated

mechanism of layered media, Mendel’s Bremmer Series Decomposition (ref s. 1

and 7) has been found to be useful, which makes it possible to study each

of the decomposed multiple reflections such as primaries, secondaries, ter-

tiaries, .. ., etc., separately. The state space models for lossless waves

in layered media which are described by the wave equations and boundary

conditions have been developed by Mendel, et. al. (ref s. 2 and 3). The models

are for non—equal one—way travel times and, by the nature of non—uniformity,

represent a special class of equations with multiple delays which are referred

to as causal functional equations. Based on these equations Mendel (ref. 1)

has proven the truth of the following decomposition of the solution to the

lossless wave equation in layered media : the complete output from a K—layer

media system , which is comprised of the superposition of primaries, secon-

daries, tertiaries, etc., can be obtained from a single state space model

of order 2K — the complete model — or from an infinite number of models, each
of order 2K, the output of the first of which is just the primaries, the out-

put of the second of which is just the secondaries, etc. This decomposition

of the solution to the lossless wave equation into physically meaningful con—

stituents (i.e., primaries, secondaries , etc.) is called a Bremmer Series

Decomposition, after Bremmer , who in 1951 (ref. 4) established a similar

decomposition.

3
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In this paper, by means of Bremmer Series Decomposition, we develop

some methods to approximate the primary reflections of a layered system

from the normal incident synthetic seismogram generated by the system for

the given information, such as surface reflection coefficient and input

waveform, etc. From these a simple inverse filter is derived which suppresses

multiple reflections. The filter removes all the multiple reflections from

the seismogram which are ever reflected off of the surface inside the media.

This filter is especially effective when the surface reflection coefficient

is relatively large as in most geophysical situations. A recursive method

is also developed which applies the filter to the consecutive subsystems

of the layered media from the top to the bottom layer, generating succes-

sive approximations of the primaries of the system.

In the first few sections in this paper (from section II through

section V), we review the state space model, the Breminer Series Decompo-

sition and its operational and transfer functional descriptions. The inverse

filter, which is denoted by F
1 
throughout this paper, is developed in

Section VI. In Section VII, another inverse filter is introduced which is

derived from a further approximation of primaries with some additional

information of the layered system. The effects of those filters and their

relationship are examined in Section VIII, from which the recursive

method of applying filter F
1 

to the subsystems of the media is developed

in Section IX. For illustrative purpose, a three layer example is used

throughout the analysis.

4
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II. A State Space Model

A state space model for the system of K—layered media, depicted in
Figure 1, is derived under the following modeling assumptions; (1) plane
compressional waves, (2) horizontally stratified nonabsorptive layers of
different travel times, and (3) normally incident waves. Each layer is

characterized by its one way travel time, t 1, velocity Vi. and normal in-
cidence reflection coefficient r

1 (I” l,2,...,K). Additionally, interface—O
denotes the surface and is characterized by reflection coefficient r

0
. We

adopt the convention of calling the layer below layer K the basement. In

Figure 1, m(t) and y(t) denote the input (e.g., seismic source signature
from dynamite, airgun, etc.) to the layered earth system which is applied
at interface—O , and the output (i.e., ideal seismogram) of the system
which is observed at the surface respectively.

The compressional waves within the k—th layer are identified by two

states Uk and dk, which denote the upgoing and downgoing waves in the
k— th layers, respectively. At present time t, is defined at the top

of layer k, whereas d
k is defined at the bottom of layer k, as shown in

Figure 2. To develop the state equation model we direct our attention at

the intersection point of the ray diagram and apply superposition to

obtain the following equations for signals u
~
(t +r

k) and dk+j(t+tk+l),
which leave that point;

uk(t+tk) — r
k
dk (t) + (l—r k) uk+l(t) (la)

d
~~I
(t+tk+L) (l+r

k) dk(t) 
- rk Uk+1(t) (ib)

These equations are applicable for k—1 ,2,...,K—1. At the surface

(Figure 3a), we obtain

d
1
(t+r 1) ~~ 

u
1
(t) + (14r

0) m(t) (2)

y(t) — (1—r
0
) u

1(t) (3)

L 
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and*, at the K—th interface, we assume that uK÷l(t)11O, to obtain
(Figure 3b)

— r
K dK(t) (4)

Signal y(t) in Eq. (3) is the measurable system output. Signal

dK+l(t), which is the downgoing wave in the basement, is also a system

output; but, since it cannot be measured, we shall ignore it in the

following analyses.

It is convenient to group Eqs. (la), (ib), (2) and (4) in a layer

ordering, as follows

d
1(t+r 1

) — —r
0 u1
(t) + (1+r 0) m(t)

r~ d1
(t) + (1—r

1
) u

2
(t)

d ( t +r  ) — (1+r d _1(t) — r 
1 
u (t)1j 

~ ~ j— 2 ,3,...,K—1
u~(t +r3

) — r~ d~(t) + (l_r ~) uj÷1
(t) )

dK(t+TK
) — (l+r K l ) dK i (t) 

— rK..l u
~~

(t)

uK
(t+T

K
) — 1

K 
d
K(t) (5)

Equations (5) and (3) together represent the state equation model for

the complete output y(t); hence, they are referred to in the sequel as

the complete model.

Comment. Equations (5) and (3) can be expressed in more compact no—

tation by introducing the following 2K x 2K matrix operators

diag (z1,z1,z2,z2,. .. ~~~~~~~ (6)

where z~ is a scalar operator used to denote a see. time delay

(i.e., z1
(t) — f(t— r

1
)). Let

— col (u
1
(t),d1(t),u2(t),d2(t),.. . ,uK(t),dK(t))

then Eqs. (5) and (3) can be written, as

— AZ(t) + b m(t) (7a)

y(t) — ~~~(t) (7b)

* In ref s. 1,2,3,6 and 7, the output equation was defined as
y(t)— (i—r 0) u (t) + r0 m (t) including the direct reflectionterm r

0 
m(t). Hi~re we neglect the direct reflection term

.6
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where the explicit structures of A, b and c can be deduced directly from

the former equations. State Eq. (7a) is a dynamical equation with multiple

time delays. It is not a differential equation, nor is it a finite—dif-

ference equation. We shall refer to it as a causal functional equation.

It is linear and time—invariant, and, as is the case with delay—time

systems, requires initial value information over initial intervals of time.

Consider the k—th layer (Figure 2). Then dk(t) is equal to zero until

t — r
l 
+ r

2 
+
~~
••+Tk~ 

and U
k 
is equal to zero until t t

1 
+ T

2 ~~~~~~~~~

These facts are true for all k.1,2,...,K; i.e.,

j
d~(t) 0 y t c [o, E r~ ) (8a)

i—i

and

u~(t) — 0 V t £ [0 , 

~j 
Tj+rj) (8b)

where j — l 2 ,...,K.

For more detailed discussions about the derivation and structure

of the State space model, the reader is referred to refs. 2 and 

3.7



III. A Bremmer Series Decomposition

Since the complete output y(t) is a superposition of primaries,

secondaries, tertiaries, etc., it can be written as

y( t )  — E ~~ (t) , (9)
i—i

where y~ (t) denotes the j—ary reflection components of y ( t ) .  In this

paper we just summarize this decomposition in the following theorem,
given without proof (see ref s. 1 and 3 for the proof).

Theorem

The complete output , y ( t ) ,  from a K—layer media system can be obtained

from a single model of order 2K — the complete model, given by Eqs. (5)

and (3) — or from an infinite number of models, each of order 2K, inter-

connected as shown in Figure 4. The primaries model, which generates only

primary reflections, and the n—aries models, each of which generates only

n—ary reflections, where n— 2 ,3,..., are defined by the following

(a) Primaries model

d 1 1 ( t +r 1
) ( 1+ r 0) m ( t )

u 1 1 ( t + T 1) — r 1 d 1 1 (t) + ( 1- r 1
) u 12 (t)

d ( t +r  ) — (1+r  ) d
1 _1(t)1,j j  i— i ii 

~ j — 2 ,3 , . . . ,K— 1
u 1,~~( t +t ~ ) — rj  d 1~~~(t) + ( l _ r ~ ) u 1~~~~1(t)~

d l K ( t + T K) — ( l+ r K l ) d l ,K_l (t)

u l ,K ( t + T K) — rK d l K (t) (10)

and

y 1(t) — ( 1— r 0) u 1 1 (t) (11)

8

--



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I
(b) n—aries model

dn i (t+T i
) — —r

0 
U
n_i , i

(t)

u ( t + r ) r d (t) + ( 1— r ) (t)
n,1 1 1 n,1 1 ~i,2

d (t + r  ) — (i+r d 
1
(t) — r 

1 
u 

1 (t)n,j j j n,j— j 11 ,j  
~ ~u~ ,~~( t + r ~ ) — r

1 
dn j (t) + 

(1_r
i
) U

n j +i
(t)

dn K (t+TK) — (i +rK...l) dn,K_l(t) 
— rK..l un_l ,K(t)

un K (t+TK) — r
K 
d
f l K(t) (12)

and

Yn
(t) — (1—r

0
) Un i (t) (13)

for n— 2 ,3,... Additionally, y(t) is given by Eq. (9). In these

equations, d , u and y denote n—ary downgoing and upgoing
n,j n,j n

states and the n—ary reflection portion of the complete output ,

respectively.

The primaries moc1el is obtained from the complete model given by

Eq. (5) by deleting the term _rj_1 u~(t) in the equations for d~ (t+r ~)~
j — 1,2,... ,K. This is done to truncate the multiple reflections higher

than secondary reflections which are due to the upgoing waves ref lec—

ting off of the top of the layers. The n—aries model is obtained in a

similar manner, by successively subtracting all the j—aries models

(where j — 1,2,... ,n—1), from the complete model to obtain a residual

model, and , by then deleting the terms which truncate multiple ref lec—

tions higher than n—ary reflections in that residual model. The reader

who is interested in the detailed derivation of the n—aries model is

referred to ref. 1 or 7.

Instead of a formal proof of the above theorem, we demonstrate its

validation through a three—layer simulation (Figur~~5 and 6). Figure 5

depicts a three layer media which can be associated with a bright spot

phenomena, because of the thin low velocity layer which is sandwiched

in between the two thick high velocity layers. We attribute no other

geological plausibility to this example. For layer 1, V
1

7,500 ft/sec

and p
1
— 2 ,2 gm/cu 3; for layer 2, V2

.5,500 ft/sec and 1,6 gm/cm3;

for layer 3, V3 V1 and p
3

p
1
; for the basement, V~~ 12,000 ft/sec

and p
4 
was approximated by the 1/4—power law, 0,23 V~~ (ref. 5).9



Figure 6 depicts the complete response as well as the primaries ,
secondaries and some of the tertiaries (through 2 seconds) which were

obtained via simulation of Eqs. (iO)— (13).

In this example we observe that the su..erposition of the first

three terms in the Bremmer series decomposition is a good approximation

to the complete response. In many geophysical situations, where ref lec—

tion coefficients are quite small, the decomposition can be truncated
af ter secondaries or tertiaries; hence, the Breamer series

decomposition also represents a way to approximate the solution to the

wave equation. This, together with the fact that, by means of the de-

composition, it is possible to deal with each of the multiple ref lec—

tions separately, simplifies complicated problems in the analyses of

a seismogram.

‘1 
_ _  _ _ _ _ _ _ _



IV. Operator Descriptions for Bremmer Series Decomposition and Layer
Transition Matrix H

The state space equations (10) for the primaries model can be expres-

sed in a compact way by introducing the following K x K matrix operator,

Z diag (z 1, z2 , . .. ,z~ ), (14)

where zi is a scalar operator used to denote a sec. time delay

(i.e. z
1 

f ( t) — f (t — r ) ) ,  and , by reordering the equations in such a
manner that all downgoing states are grouped together and all upgo ing
states are grouped together . Let

d (t) col (d (t) ,  d (t),  ..., d (t)) (iSa)1 1,1 1, 2 1,K

.~1
(t) col (u 1 1 (t) ,  u12 (t) ,  ...

~~ 
ul K (t)). (15b)

Then, Equations (10) can be written, in partitioned form as

Z 1 d 1(t) — A1 d 1(t) + 
~~ 

m(t) (16a )

Z 1 u 1(t) — A3 d 1(t) + A4 u 1(t)

where

0 0 0 ... 0 0
( 1+r 1

) 0 0 ... 0 0

A 1 — 0 ‘(1+r
2) 0 ... 0 (17)

O 0 (1+r
3
) ... 0 0

0 0 0 ... ( l + r K l ) 0

A 3 
— diag (r 1, r 2 , . .  . ,rK) (18)

0 ( 1 — r )  0 0 ... 0 
-

0 0 ( 1 — r 2 ) 0 ... 0

A4 — 0 0 o ( 1:r
3

) ... 0 (19)

0 0 0 0 ... ( l — r
~...1)

0 0 0 0 ... 0

and

11



g col (1+r
0
, 0, 0, . . .,  0) . (20)

Matrices A1, A
3 

and A
4 
are K xK , and & is K x  i. Equations (16) can be

solved for u
1
(t) as

u1(t) — ( I — Z A 4 )~~ ZA3( I — Z A 1) Zg m( t )  . (21)

In addition to Eq. (21), we have the observatiozi Eq. ( i i ) ,  which can
be written as

/ 
d 1(t)

y 1(t) — (O,0,...,0 (1—r
0)~0~

...~O)(

\ u 1(t)

or

y 1(t) — h’ u1(t) (22)

where

— ((1—r
0
),O,... 0), which is 1XK . (23)

In the same manner, Eq. (12) for n—aries model can be expressed

as 

Z ’ d1
(t) - A

1 d (t) + A
2 u 1(t) (24a)

Z~
’ u ( t) — A

3 
d ( t) + A

4 
u (t) (24b)

where A
2 
is a K x K matrix given by

A
2 

— diag (—r0, —r 1,. . . .r~(_~ ) (25)

We notice that in Eq. (24a), the input to the system of n—aries model

is the upgoing waves , ~~~1(t) of the (n—1)—aries model. Solving Eqs.
(24a) and (24b) for ~~

(t), we f ind that

~~~(t) — (I—ZA 4)
’ ZA

3(I—zA 1Y
’ 
~~2 ~~

_1 (t) . (26)

Additionally (13) can be expressed as

— h’ ~~ (t) (27)

where Ii’ is given by (23)

12 
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V
We observe that the same matrix term (I—ZA

4)
1 ZA (I z/~)

1z

appears in Eqs. (21) and (26). Let

H — (I — ZA4) ZA
3(I 

— ZA 1Y
’ z . (28)

Then, Eqs. (21) and (26) can be expressed in terms of H, as -

u
1
(t) H £. m (t) (29a)

(t) — H A
2 ~~~1

(t) (29b)

These are the recursive equations for u (t). In non—recursive form,

we can write Eq. (29b) as

u (t) — (HA
2
)n~~ u1

(t) . (30)

Explicit expressions for matrix H in terms of reflection and

transmission coefficients with multiple delay operators were obtained
in ref. 6. Matrix H is Kx K , for a K—layer system, and is given by

H

h1~ r~ 5n-1 en]/~~~~i 
ej 1  Pi_~ 

qj_1 (31a)

for i 
~ 
j, i,j — 1,2,.. .,K

and

— ~~~ 
- (31b)

where
i i i

ei 
— U z~ , s1 — fl (1—r ~) , p~ fl (i—r i)i—i i—i i—i

j
q
1 

— fl (l+r~), and s0
_ p
0 q0 1. .

i—i

13



For example, when K— 3, H is given by

2 2 2  2 2 2 2  2 2z 1r 1 + z1z2r2 ( 1 — r
1

) + z 1z2z 3r3( 1 — r 1) ( 1 — r 2 )

H — z
1
z~r2(1+r 1

) + z14z~r3(1+r1)(1—r~)

z
1
z
2
z~r3

(1 + r
1
) (1 + r

2
)

2 2 2  2z 1z2r2 ( 1 — r 1) + z1z2z3
r
3(1—r 1)(1—r 2

)

2 2 2  2z2r2 + z2
z
3
r

3
( 1 — r

2
)

2z2z 3r 3(1 + r2 )

z1z2z~r3
(1-r

1
)(1-r

2) 
. 

h 11 h 12 h1;
2z2z3r3( 1 — r 2 ) — h21 h22 h23 (32)

2
z
3
r
3 h31 h32 h33

Physically, element h
1~ of matrix H represents the unit impulse

response of single bounce reflections observed at the top of the i—th

layer due to a unit impulse excited downward from the top of the j—th

layer. Figure 7 illustrates some examples. We refer to matrix H as the

layer transition matrix.

14 
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V. Transfer Function Representations of Bremmer Series Decomposition

Taking the Laplace Transformation of Eqs. (10), (11), (12) and (13),
and introducing the following KX K  matrix,

r — T s — t~~ —tKllZ(s) — diag je e 2 ..~~ e J (33)

we obtain equations of the same structure as Eqs. (16a), ( 16b), (24a )
and (24b); i.e.,

i1 (s) D 1 (s) — A
1 

D 1(s) + & M(.) (34a)

Z~~ (s) ~~~~~~ — + A~ !L1() (34b)

for primaries model, and

Z ’(s) U (s) — A1 U (s) + A
2 ~~ _~~(s) (35a)

Z ’(s) U (s) — A
3 
U (s) + A4 U (s) (35b)

for n—aries model, where

col (D~~1(s)~ Dn 2 (S)~ ...
~~ 
Df l K

(s)) (36a)

— col (U 1(s) ,  U~~ 2 (5)~ . . .,  U~~~ (s)) (36b )

n 1,2,...,K.

It is straight forward to show that the Laplace transforms of the

rest of the equations in Section IV also remain the same in their expli-

cit structures. Especially, the Laplace transforms of Eqs. (29a), (29b)

and (30) are given by

— H(s) & M(s) (37a)

a H(s) A2 i (s) (37b )

and

U (s) (H(s) A
2 )~~~’U 1(s) (38)

respectively , where

H(s) — (I — Z(s) A4 ) ’ Z(s)  A 3(I — Z(e)  A 1) ’. Z(s)  (39)

which is the Laplace transformed version of the layer transition

matrix H given by Eq. (28).

15
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In addition, the output equation is given by, from Eqs. (22) and
(27),

Y (s) — ii’ ~4~(s) (40)

n — 1,2,. . . ,K.

Z—transformation is also applicable in our Bremmer series decom-

position if we let

r
i
an

iT , 
i 1,2,...,K (41)

where T is the sampling interval. As we did in Laplace transfor-

mation, defining
rn  n

Z(z )  — diag Lz , z 2 , ..., z J , (42)

we obtain z—transformed version of Eqs. ( 16a), ( 16b), (24a ) and

(24b); i,e.,

Z ’(z) D1(z) — A1 D 1(z) + g. M(z) (43a)

Z ’(z) !L1
(z) — A3 D 1(z) + A4 U 1(z) (43b )

for primaries model , and

Z(z)~~ pn (z) — A1 ~~~(z) + A2 ~~~~ (z) (44a)

U (z) — A3 D (z) + A4 ~4~(z) (44b )

for n—aries model , where

— col (D 1(z) ,  Dn 2 (Z)
~ ~~ 

D~~ g~(Z))  (45a)

— col (U~~ 1(z)~ Un 2 (Z)
~ ~~~ 

U~~~ (z))  (45b )

N —  1,2 ,... ,K.

The z—transforms of the rest of the equations in Section IV also

remain the same in their explicit structures. Consequently, the operational
representations in Section IV , the Laplace transforms and the z—transforms
are readily transferrable to each other merely by changing the notations
of corresponding variables.

.1 
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The corresponding z—transforms of Eqs. (29a), (29b ) and (30)

are given by

U
1(z) H(s) &M(z) (46a)

U (z) — H(s ) A2 !~~_ , (z) (46b)

and

• (H(z)A
2
)~~

1
U1(z) (47)

respectively, where

H(z) a (I—Z(Z)A
4)~~~Z(~)A3 (I—Z(z) A

1)~~ Z(z). (48)

In addition, the output equations are

Y (z) • h ’ U (z) (49)

n —  1,2 , . . . ,K.

It is not difficult  to show that

H(s) — 
HIz~~ e

_t iS (50a )

H(z ) H ~ i (50b )z i+  a

i — 1 ,2 , ... ,K. We refer to H(s ) and H(z)  as the layer transfer matrix.

17
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VI . Derivation of the Inverse Filter for Suppressing Multiple Reflections

In the following analysis we restrict ourselves to the system of

layered media for which the modeling assumptions given in Section II

apply . We will use the z—transform representations of our state space

model in all derivations throughout this analysis; for, it is usually

convenient for simulation purposes .

Our objective is : given a synthetic seismogram with some infor-

mation about the system, (such as estimated reflection coefficients and

input waveform) to suppress multiple reflections from the seismogram so

as to maximize the contributions from the primaries. In our state space

model , it is equivalent to say that given Y(z), the complete response

of the layered media, we want to find an inverse filter which gives

Y
1
(z), the primaries (the output of the primaries model), or an appro-

ximation of Y
1
(z) from Y(z).

Suppose the reflection coefficient, r0, of the surface and the in-

put waveform, M(z),are both known, and that the seismogram Y(z) (the

output of the system generated by M(z)) is also known. We are going to

suppress multiple reflections from Y(z) as much as possible making use

only of r 0, M(z ) and Y(z) .

Let

U(z)  (U 1(z),  U 2 (z ) ,  ... , U~ (z)) (51)

where Ui(s) is the a—transform of u1(t) which is the upgoing wave in

the i—th layer of the complete model. Since the response of the com-

plete model is the superposition of the responses of primaries, secon-

daries, tertiaries, etc. models, we can write

U(s) ~~~ j~~(z) (52)

where U~ (z) is given in Eq. (45b). Notice the difference between

ui (s) and ~~ (z); the former is a scalar function which is associated

with the i—th layer in the complete model, whereas the latter is a

vector which denotes all the upgoing waves in the i—aries model

18
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Substituting Eq. (41) into (52) , we have

U(z)  — 

~~~ U 1(z) (53)
n-i

where the explicit dependence of H on z is omitted for notational

simplicity. Since the infinite series in the right hand side of

Eq. (53) converges to U(s) ,  we can write

r~~~~~~~2
)
~

L_ 1 
— [‘—‘s] ’

Hence,

U(z)  • [I_ H &2 ] ’  !!~ (
~

) (55)

or

U 1(z) — 

~~~~~~~~~ 
(56)

This is the equation for the upgoing primary waves in terms of the

upgoing waves of the complete model. Let

H {i~ J
} i ,j 1,2 ,.. .,K . (57a)

Then is the corresponding s—transform of hij given by Eq. (31);
i.e.,

h
ij 

hij ni 
(57b)

Z
i 

•+ S

Then , substituting (57 ) into the vector equation (56) and taking its

first component , we have

U 1 1 (z) a ( 1 + r 0 h~~ ) U 1(a) + r 1 h 12 U 2 (z) + ... + r K_ , h iK Uk (s)

or

U 1,1(z) — U~ (z) — [_ r 0 ~~~ 
U 1(z) — r 1 ~ 12 U2 (z) — ... — ~~~~ 1

~1K Uk (s )l

(58)

Since U 1,1 (z) represents the primary reflections and U 1(z) represents

the complete response, the terms in the brackets in Eq. (58) should

represent all the multiple reflections. Our objective is to suppress

those from U 1(z) .  To achieve this purpose we should express the

19 
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bracketed terms in terms of U1 1(z) and our known quantities U 1(z),  r0
and M(z) (U 1(z) is obtained directly from Y (z )  by Eq. (3)).  But , this

is impossible because those terms in the brackets are functions of

r 1~ t2, .. ,r~ and r1,r2,... ,rK which we do not know and moreover

U 2 (z) ,  U 3(z),  ... , U
K

(S) are not measurable. However , the first term

in the brackets, especially 
~~~~~~

, which is also a function of

and r
l r2,...,rK

, can be expressed in terms of U1 1 (z) and the known

quantities from Eq. (46a), and this fact enables us to make an approxi-

mation of the primaries ~~ 1(z) from U1(z).

Taking the first  component of the vector equation (46a), we have

U 11 (z) c111(1+r 0
) M(z)  (59)

Hence , U
1 (z)

h (60)
~~ (14r~) M ( z )

Substituting this into Eq. (58),

U ~(z)
U (z) U (z) — [_r II - U (a) + cL (z) 1 (61)
1,1 1 0 (i+r0) M(z) 1

where

a(s) — —r 1 h 12 ~~~~~ 
— ... — rK_ l h iK (s) (62)

From Eq. (61), it follows that

U 1(z) a(s)
U 1 1 (z) — 

r
0 

U
1
(z) — 

r0 
- 

~~~~ 
(63)

1 — 

(1+r0) M(z) 
— 
(i+r0) M(z)

From Eqs. (3) and (11), we have

U
1
(z) — ( 1_r

e
) Y(z (64)

U 1,1(z) — ( 1—r 0
) ?,(z) .  (65)

20
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Substituting these into Eq. (63) for U 1(z) and 111 1(z),  we get

Y( z)  (1—r
0

) cx (z)
Y1(z) — r0 Y( z)  — r Y(z)  (66)

1— 1—
(1—r~ ) M(z) ( 1—r~ ) 14(z )

Usually the second term in the right—hand side of Eqs. (66) is quite
small in magnitude compared with Y 1(z) ,  and especially when r0 >>
( i —  1,2 ,. . . ,K),  as in most geophysical situations, this term is almost
negligible. In this case

Y (a)

r0 Y(z)  (67)
1 —  2(1—r e) 14(z)

Let
Y (a)

F
1(z) r0 Y(z )  (68)

2( 1—r e) 14(z)

and

( 1—r 0) cL(z)
— r Y(z )  (69)

1 2( 1—r e) 14(z)

Then Eq. (66) becomes

Y
1(z) — F

1
(z) — 8(z)

or

F
1(z) — Y 1(z) + 8(z) (70)

Let the relation given by Eq. (68) be F1. Then F1 is the inverse

filter we were looking for; i.e., given the synthetic seismogram Y(z)

with knowledge of the surface reflection coefficient, r0, and the input
waveform, M(z), F

1 suppresses some amount of (actually the most signi—

ficant portions of) the multiple reflections from Y(z) and yields an

approximation of the primaries Y 1(z).

21



If the input is an impulse, then 14(z) — 1 and Eq. (68) reduces to

Y(z)
F1(z) r (71)

1— 0 Y(z)
(1—r

0
)

In this case Y(z) represents the transfer function of the layered media .
A simulated result is shown in Figures 8 through 10 for the three

layer example given in Section III. The impulse response of the media and its
filtered output, obtained by Eq. (71)~ are shown together in Figure 8.

Figure 9 depicts the input waveform and Figure 10(a) is the synthetic

seismogram due to this input convolved with the impulse response. The

result of applying the filter in Eq. (68) to the seismogram is shown

in Figure 10(b). The three prominent peaks in Figure 10(b) represent

the primaries Y
1(z). The remaining small ripples represent the additional

term 8(z) in Eq. (69) or (70). We see that, in this example, significant

multiple reflections are almost completely eliminated by our filter.
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VII. Another Filter, which makes use of Additional Information about

and

Suppose the reflection coefficient r
1 
associated with the 1st inter-

face of the media and the one way travel time of the 1st layer are

known in addition to knowledge of r
0 
and the input waveform. This assump-

tion may be applicable in the marine situation. Making use of this extra

information we want to find an inverse filter which suppresses some

additional multiple reflections.

In the following we will show that the second term —r
1 
h12 U2(z) in

the brackets in Eq. (58) can be expressed in terms of U
1 1(z) and the

known quantities r
0
,r 1, r

1 
and N(z) .

From Eqs. (31a), (31b) and (57b), we have

— —
~~~~ for i� j  (72)

q

Especially,

p (1—r )
(73)

h21 q1 (1+r1)

or
(1—r 1)

h — -i-- h (74)12 
~‘~~ i) 

21

Now, taking the second component of the vector equation (46a), we
have

U, .,(z)
h — 

L ,L — (75)21 (1+r0) 14(z)

Hence,

(i—r)U (z)
h 1 1,2 (76)12 (1+r0)(1+r1) 14(z)

23
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Since U1 2 (z) is not measurable, we still need an expression for it.
To obtain U1 2 (z) we should ref er to the state equations of the pri-
maries model. The z—transfortns of the first two equations of Eq. (10)

are

Z
n1D1 1 Z — (1+r0) M(z) (77a)

z ”1U1 1 (z) — r
1 
D11(z) + (1—r1) U12 (z) (77b)

From these, we get

5
—n1 U1 1 (z) — (1+r

0
)r

1 
5
n1 M(z)

U
1 ~~~ 

— (78)
‘ (1—r1)

Substituting Eq. (78) into (76) for U1 2 (z), we have

z ~1 ~1 1 (z) r, z
h £ ,.L — 1 (79)12 (1+r0)(1+r1) M(z) (1+r 1)

Rewriting the first two equation in Eq (5) in z—transformation ,

Z 1 D
1
(z) — —r

0 
U1

(z) + (1+r
0
) N(s) (80a)

z l L’
1

(z) — r
1 
D1

(z) + (1—r
1
) U

2
(z) (80b)

From these, we get
—ni fl 1 iii

(z ‘+r0r1 z ) U
1

(z)  — ( 1+r
0

)r
1 

z ‘~ M(z)
U (z) (8 1)
2 (1—r 1)

Thus, the first two terms in the brackets of Eq. (58) are expressible

terms of known and measurable quantities and U1 1 (z). We write Eq. (58)

U1 1 (z) U
1
(z) — [_r

0 
i~t~~ U1

(a) — r
1 
h12 U2(z) + i(z)} (82)

where
y(z )  —r 2 h 13 U.~(z) — ... — rK l  h~~ UK (S) (83)

24
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Substituting Eqs. (60), (79) and (81) into Eq. (82), we have
2 ~ 

2n, 3 2n
(1—2r 1 —r 0

r
1 z 

‘) (1+r
0
)r

1 z 
1

U1 i(s) a 
2 U

1
(z) + 2 M(z)

(1—r
1
) (1—r

1
)

2 —2n

~ 
r1 (r0+r1.z 

1) Ui(z)1
2 

— - 

~1~ 
1U 1 ~~~ 

— y(z) (84)
L( 1—r 1) (1+r0)(i—r 1) M(z) J

Finally, solving Eq. (84) for U11(z), we have the following equation

2 3 2n1 ~ 
2n1(1—2r

1 —r 0
r
1 a ) U1

(z) + (i+r
0
)r 1 z M(z )

U (z) — 
—2 — 6(z) (85)

-(r
0
+r

1 
z ~zl) U

1
(z)

1 — 
(1+r0) H(s)

where 6(z) is a residual term which is deduced from Eq. (84). Substituting
Eqs. (64) and (65) into Eq. (85), we obtain

2 ~ 
2n1 2 3 2n1(1—2r

1
—r

0
r
1 z 

) Y(z) + (1—r
0
)r

1 
z M(z)

Y
1
(z) — —zn — n(s) (86)

(r
0+r1 z 

1) Y(z)
1 —

(1—r ~ ) N(s)

where

n(z) — (i—r
0
) ~(~) (87)

Now, let
2 .

~ 2n~ 2 3 2n,
(1—2 k —r r~ z ~) Y (z ) + (1—r 0)r, z 14(z)

F (a) — 
1 0 1 

—2n (88)2 (r
0
+r

1 
z 1) Y(z)

1 - 
(1-r~) H(s)

L 25



Then
F
2

(z) — Y
1

(z) + n(s) (89)

Let the relation in Eq. (88) be denoted by F2 
. Then, F2 is the

inverse filter we were looking for. F
2

(z) is a better approximation
of Y

1
(z) than F 1(z) given in Eq.(68). For the simulation purposes,

our expression for F
2(z) in Eq. (85) is not so useful because of its

complicated structure. In the following section we will show that

filter F
2 is just equivalent to the successive application of filter F1

in two stages. From this, a recursive method to generate F (z) ,
n — 2 ,1,...,K , which are the successive approximations o fY

1
(z) with

will be developed in Section IX.
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VIII. Effects of Filters F1 
and F

2

Let R(z) be the transfer function of the system of layered media.

It is given by
Y(z)R(z) — M(z) (90)

Then, Eq. (68) for filter F
1 
can be written as

F
1
(z) — M( z) (91)

1 - _ _ _ _ _

(1—r
e
)

If the input is an impulse, then M(z) — 1 and Eq. (91) reduces to

F (z) ~~~~ (92)
0

1 —  2 
R(z)

(1—r
0
)

Now, we def ine another transfer function G(z) as

G(z) — R(z) + r0 
(93)

The additional term r0 
represents the direct reflection of the impulse

at the surface at time zero (Figure ila). Notice that R(z) does not

include this direct reflection because in our state space model Y(z)

was defined as Y(z) — (1—r
0
) U

1
(z) and it excluded the direct ref lec—

tion term r0 
M(z) (see Eq. (3)). The expression for filter F1 

in

terms of G (z) is obtained just by substituting Eq. (93) for R(z)

into Eq. (91) or (92). In a similar manner, we def ine R1(z) and G1 (z)

to be transfer functions of the subsystem of the layered media below

the 1st layer such that

G1(z) 
a R1

(z) + r1 (94)

This is depicted in Figure llb. Then, observing the ray diagram in

Figure lic , we can write

~~~ ..
~~~~~~~~~~~~~~~~~~~~~~~~~~~ - , _-,_ .~~~ .- . 
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P(z ) • (1-r 0) 
i::

’ 

r
0 

n~ 

(95a)

Q(z) • (1+r0) z — ( 1 )  R(z) (95b )

G
1
(z) — (95c)

From these we get the relation between G
1

(z) and R(z),

R(z)
G
1
(z) — 

2 
(96a)

(1—r0
) — r

0 
R(z)

or 2n
z

R(z) — (i—r~) 
-

~~~~~~~ 
(96b)

14-r 0z  G1(z)

Substituting Eq. (96b) into Eq. (91), we have

2 2n1F
1
(z) — (1—r

0
)z G1(z) M(z) (97a)

If the input is an impulse, then 14(z) — 1, and

2 2n1F
1
(z) — (1—r

0
)z G1(z) (97b)

This result indicates the fact that the output of the filter

is the same as the output of the system of the layered media just

below the 1st layer, which is observed at the surface. This is a rather

interesting result because the impulse response (or transfer function) of this

subsystem can be obtained from the output of the filter, i.e., from eq. (9Th) ,

-2n
1

G
1
(z) — 

2 
F
1
(z) (98)

(1—re)

This result also indicates that filter F1 
eliminates all the

multiple reflections which are ever reflected off of the surface,

When the reflection coefficient of the surface is relatively large,

the multiple reflections removed by filter F1 
are those which have

significant magnitudes and the effect of the filter is especially

remarkable.
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Filter F
2 
given in Eq. (88) is expressed in terms of R(z) as

2 ~ 
2n1 2 3 2n1(1—2r

1 —r 0
r
1 
z ) R(z) + (1—r

0
)r

1 zF
2

(z) — —Zn M(z) (99)
(r0+r1 z 1)

1 —  2 
R(z)

(1—r e)

Substituting Eq. (96b) for R(z) into Eq. (99), we get

2 2n1 (1—2r~ ) G
1

(z) +
F
2

(z) — (1—r 0
) z — M(z) (100)

1 — r 1 G1
(z)

Again, substituting Eq. (94) into Eq. (100) for G
1
(z), we obtain the

following equation ,

2 2n R
1
(z)

F
2(z) 

a (1—r
0
) z 1 r

1
+ 

r 
- M(z) (101)

1 —  1
2 R

1
(z)

(1—r
i
)

Here, R1(z) is, as we defined in Eq. (94), the transfer function of the

subsystem of the layered media below the 1st layer , excluding the
direct reflection term r

1 
at time zero. The second term in the

brackets in Eq. (101) is exactly of the same form as filter F1,
hence this term represents the filtered output of the subsystem

2 2n1
below the 1st layer. The first term (1—r

0
) z r

1 
14(z) in Eq. (101)

represents the primary reflection assoc iated with the 1st interface
of the media. Hence, F2

(z) can be obtained by applying f ilter F
1

twice successively, first to the given system and then to the sub—
system below the 1st layer; i.e.,

(1) apply F
1 
to Y(z) to get F1

(z),
(2) then, compute R1(z) by Eqs. (98) and (94) from F1(z) and apply

F
1 again to R

1(z). 
F
2
(z) is then obtained by substituting this

result into Eq. (101).

Now, if we def ine 0
2
(z) and R2(z) to be the transfer functions

of the subsystem below the second layer in the same way as we de-

f ined 
~~~~ 

and R1(z), such that

0
2
(5) — R2

(z) + r2 , (102)
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then, it is not difficult to show that

________________ 
2 2n2

r 
— (1—r

1
) z G

2
(z) (103)

1 — 1
2 

R
1
(z)

(1—r
i
)

Equation (103) is analogous to Eq. (97b). Substituting this into Eq.

(101), we have
2 2n1 2- 2 2n1+2n2F

2
(z) — [(1_r

0
)r

1 z + (1—r
0
)(1—r

1
) z G

2(z)] 14(z) (104)

This result shows that F
2(z) is just the output of the subsystem below

the 2nd layer, which is observed on the surface, plus the primary re-
flections reflected from the 1st interface. This is described in Fi-

gure 12. This result also indicates that filter F
2 eliminates all the

multiple reflections which are ever reflected down from the surface and

the 1st interface.
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IX. Recursive Scheme for the Successive Approximation of the Primaries

In Section VIII we have already recognized that F2(z) can be obtained
in a recursive way applying f ilter F

1 
in two stages, first to the whole

systemR(z) and then to the subsystem R
1
(z) which is obtained directly from

the result of the previous step. This procedure can be extended to apply

filter F
1 
to the consecutive subsystems R

2
(z),R

3
(z),... ,R.~_1(z) generating

F
3
(z) ,F

4
(z),...,F

K
(z). The subsystems are computed recursively during this

procedure. The outputs F
l
(z),F

2(z),...,
F
K
(z) are then successive approxi-

mations to the primaries Y
1
(s). It will be shown that in the deterministic

situations (i.e., perfect measurements) the final output, ‘K~~~’ 
represents

the pure primaries of the system.

Observe, that to compute F1(z) we need to know the value of r0, and
to obtain F

2
(z), additional knowledge of and r

1 
is necessary. Likewise ,

in order to apply the recursive procedure to obtain the third output F
3
(z),

knowledge of t
2 

and r
2 
is required, and in general, to get F~(z) at the

n—th stage of the procedure we need knowledge of tn_i and r~_1. In this
paper we just assume that those values are known in each step of the pro-

cedure (by estimation or whatever). In a later paper we shall discuss

the estimation of these quantities.

,Just as we defined G
1
(z) , R

1
(z) and 02 (z) , R2(z) in Section VIII, let

G~(z). Ri(s) be the transfer functions of the subsystem of the media below

the i—th layer; G~ (z) includes the direct reflection term ri 
at time zero

and R
1
(z) is just the same as C~ (z) except that it excludes the direct re-

flection term; i.e.,

— R
1

(z) + ri (105)

i— 1,2,...,K. Using the same argument as presented before to obtain - 

-

Eq. (96b), it is not difficult to show that R~(z) and G~~i
(z) are re-

lated as follows
2ni÷i

2 
a Gi+i (z)

R1(z) (i—r i) ~~i+i 
(106)

1+r i z
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Let us define Xi(z) to be

R
i

(s)
Xi(z) — 

r (107)
1— 2 R

1
(z)

(i—r i)

Then , X~ (s) is the output of the filter F 1 which is applied to the
subsystem Ri (s). Substituting Eq. (106) into (107) for Ri (z),  we have

X1
(z) — (1—r~) 

2ni+1 G
i+i

(z) (108)

From Eqs. (105) and (108), we obtain
_2n

i+i
Rj+i(z) — 

Z 
2 Xj(z)—r j+i (109)

( —r i)

This equation states the important fact that subsystem R
i+i

(z) can be
obtained from the filtered output of subsystem R

i(s). This Eqs. (107)

and (109) represent a recursive relation for R~ (z) ’ s. i 1 ,2 , . . . ,K ,

with R(z) as the starting value. Equations (97a) and (104) can be written

in terms of R
1
(z) and 1(

2
(z) as

2 2n 2 2n 1F
1

(z) — [(1_r0)r1 z 
1 + (1—r

0
) z R

1(z)] 
N(s) (110)

and
2 2n1 2 2 2ni+2n2

F
2
(z) — [(1_r0

)r
1 z + (1—r

0)(1—r1
)r
2 z

2 2 2n1+2n2+ (1—r
0
)(1—r

1
) z R,(z)] 14(z) (111)

Observing the expressions for F
2
(z) in Eq. (101), we can see that

F
2
(z) is obtained if we replace R

1(z) in Eq. (110) by X1
(z), the

filtered output of R~(z). Likewise, we expect that F3
(z) will be

obtained if we replace R
2
(z) in Eq. (iii) by X

2
(z). This proce-

dure can be continued to generate F
4
(z),F

5
(z),. . . ,F

K
(z) with the

help of the recursive relations given by Eqs. (107) and (109).
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Then , Fj+i (z) has the following structure;

F
1~ 1

(z) — 11 (1—r~) 5
2n
k+1) r1 +( ~ ~~~~~ z

2 1) x ( ) l  14(z)
~—1 k—0 k0 J

(112)

The first term in the brackets represents the primaries which are

associated with the first n interfaces (interfaces 1..n) of the media

and the second term represents the filtered output X (z) of the sub-

system R
n(Z) observed at the surface. This is depicted in Figure 13.

Since the effect of the filter is to remove all the reflections which

are ever reflected down off the top surface of the media (subsystem),

F
n(Z)~ 

as the result of the n—th stage of the procedure is free from

all those multiple reflections which are ever reflected down off the

surface and the first (n—i) interfaces. If we continue this procedure,

after the K—th stage all the multiple reflections will be removed

completely from the seismogram and only primary reflections will remain.

To see this, observe from Eq. (112) that

F
K

(z) — [
~
‘ (Li (1—r~) 2n

k+I 
)rt + 

(~~~~~~~~~ 

(1—r~) 
2fl
k+1) XK_1(z)] M(z)

(113)

But from Eq. (108)

2 2n
xK_1 (z) — (1—rK l ) z K GK

(z) (114)

where the subsystem 
~~~~ 

below the K—th layer is just the basement

and
GK

(z) — rk 
. (115)

Hence, 
-

F
K(z)_[E(fl (i—r~ ) z t

~~1)r~
] 
14(z) (116)

£~i 
k—0

which represents the pure primaries of the system.
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Summarizing the recursive procedure

Starting Equation

R (z)
X0

(z) — r (117)
- 1— 

2 
R(z)

(1—r
e)

Recursive Relations
- -2n,~

R
i

(z) _ 
2 Xi_i (z)—r i (118)

(l—r
i+l)

R
i ~~X~ (z) — 

r (119)

1— a (s)
(i—r

i
) ~

Output Equations

F1
(z) — X

0(z) 14(z) (120)

n h I L _ i  2n \ / i  2n \ 1
F~~1

(z) —
~ ~

( II (1—r~) k+1 
J 
r~ + ( fl (I—r~ ) z k+1 j Xi(z) 14(z)

L~~ 1\k— 0 / ~~k—0 / J
(121)

where 1 1,2,...,K—1.

Figure 14 depicts filtered outputs F
2

(z) and F
3
(z) for the three

layer example which are obtained by the recursive procedure above
(This is continuation of Figure 10). The last result, F

3
(z), which is

shown in Figure 14(b) exhibits the three pure primaries of the system.

Since, in this example, the considerable amount of multiple reflections
was removed already in the first stage (see Figure 10(b)), F

2
(z) and

F
3
(z) in Figure 14 shows little changes in improvement.
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This is due to the fact that the surface reflection coeff icient, r0,
in this example is much greater than r1,r2 and r

3 
in magnitudes. Fi-

gure 15 depicts another example of the recursive filtering. Figure

15(a) is the complete response of a six layer media. The values of

the reflection coefficients and the one—way travel times of the media

used in this example are

r
0 

— 0.68 , r1 
— 0.40 , r~ ——0.32 , r3 — 0.53,

——0.78 , r
5 

— 0.71 , r
6 

— 0.65 , and

• 0.07 , — 0.04 , t 3 
— 0.115, r~ — 0.09,

a 0.035, 1
6 

— 0.13

The same input given in Figure 9 is used in this example. Figures 15

(b)—(g) show successive filtered outputs, F1
(z), F

2(z), ..., F6(z),
which are generated by our recursive filtering procedure. Again,

F
6
(z) in Figure 15(g) represents the primaries of the six layer media.
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X. Conclusions

We have presented a simple inverse filter which suppresses a fair

amount of the multiple reflections in a synthetic seismogram. This filter

requires knowledge of the surface reflection coefficient and the input wave-

form. The Bremmer series decomposition played a key role in its develop-

ment. The filter was shown to be especially useful when the surface re-

flection coeff icient is relatively large (as in most geophysical sit~a—
tions) in which case significant multiple reflections are almost completely

removed so that the output is a good approximation of the primaries of the
layered system.

The recursive filtering method presented herein demonstrates the

possibilities that the subsystems of the layered media can be revealed
from the seismogram by applying the filter successively and that pure

primaries of the system can be obtained thereof. The actual application

of this recursive procedure requires the estimation of the reflection

coefficients and the oneway travel time in each stage to perform the next

recursion; but, this in turn, provides motivation to use this procedure

in estimating those quantities. The estimation scheme is now under

research. Also, work is in progress on developing a version of this

filter that is applicable to noisy seismogram or realistic field seismic

data and to the situation when the source waveform is not available.
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